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1. INTRODUCTION 
     When a straight duct rotates at a constant angular 

velocity about the axis of its cylindrical symmetry, the 

flowing of fluid in the straight duct is subjected to both 
a Coriolis and a centrifugal forces. Such a rotating 

passages are used in cooling system for conductors of 

electric generators and generator motors for pumped-

storage stations. The earliest work on this subject 

focused on theoretical investigations of laminar flow in 

a 'weakly rotating' circular pipe. To the best of the 

author's knowledge, most of the previous works on flow 

through a rotating straight ducts have been performed 

on a qualitative basis. Yang  et. al. (1994) reviewed in 

detail the literature on rotating duct flow. For this kind 

of flow, Ito and Nanbu (1971) and Ito (1959) derived 
dimensionless parameters using integral method. 

Ishigaki (1994) introduced the dimensionless 

parameters to demonstrate the quantitative analogy of 

flows in a circular pipe and obtained satisfactory results. 

Lee and Baek (2001), confirmed the quantitative 

analogy of fully developed laminar flow in orthogonally 

rotating straight duct and stationary curved ducts of 

square cross-section, using dimensionless parameters 

suggested by Ishigaki (1994). Lee and Baek (2002) 

showed the similarity of fully developed laminar flows 

in orthogonally rotating straight rectangular duct and 
stationary curved rectangular duct of arbitrary aspect 

ratio. 

 

 

 

Our aim is to study the Non-isothermal fluid flow 

through a rotating straight duct with rectangular cross-

section, where the outer wall of the duct cross-section is 

heated and inner wall is cooled. Studying the effect of 
rotation, pressure driven parameter, Grashof number, 

Prandtl number and large aspect ratio on the flow 

characteristic as well as solution structure are an 

important object of this paper. Numerical solutions are 

obtained by the Spectral method as a main tool and 

Newton-Raphson method, collocation method and are-

length method are used as a secondary tools. 

 

2. GOVERNING EQUATION 
     We shall consider the fully developed flow through a 

straight duct with rectangular cross-section. Let 2𝑙 is the 

width of the duct cross-section and 2ℎ its height. Figure 

1 shows the Cartesian co-ordinate system (𝑥′, 𝑦′, 𝑧′) and 

the same co-ordinate also (𝑥′, 𝑦′, 𝑧′)  with the center 𝐶 in 

a cross-section of the straight duct. The system rotates at 

a constant angular velocity, Ω = (0, −Ω , 0) around the 

𝑦 −axis. The flow is drive by pressure gradient  −
𝜕𝑝 ′

𝜕𝑧 ′
=

𝑐1
′  along the central line of the duct. i.e, the main (axial) 

flow is in the 𝑧′ −direction as shown in Figure 1. 

Thus, introducing the following non-dimensional 

quantities as follows: 

𝑢′ =
𝜈

𝑙
𝑢, 𝑣 ′ =

𝜈

𝑙
𝑣, 𝑤 ′ =

𝜈

𝑙
𝑤, 𝑥′ = 𝑙𝑥, 𝑦 ′ = 𝑙𝑦, 𝑝′ =

𝜌𝜈𝑝

𝑙2
 

𝑇′ = (Δ 𝑇)𝑇  
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Fig 1. Rotating straight duct. 

 

     where, 𝑙 is the half width of the duct cross-sectional, 

𝜈 is the kinematic viscosity. 𝑘 is the thermal 

conductivity, 𝑔 is the acceleration due to gravity, 

𝑢′, 𝑣′, 𝑤′ is the dimensional velocity components along 

𝑥′, 𝑦′, 𝑧′ direction respectively, 𝑢, 𝑣, 𝑤 is the 

dimensionless velocity components along 𝑥, 𝑦, 𝑧 

direction respectively, 𝑝′ is the modified pressure, 𝑡 is 

the time, 𝑇′ is the temperature of the flow field, 𝑇 is the 

dimensionless temperature of the flow field. 

The non-dimensional continuity, momentum and energy 

equations of the problem are: 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
= 0                                                                 (1)   

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦 ′
= −

𝜕𝑝

𝜕𝑥
+

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 + 𝑇𝑟𝑤                        (2) 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 + 𝐺𝑟                            (3)                                              

𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
= 𝑝𝑔𝑟 +

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 − 𝑇𝑟𝑢                        (4) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

1

𝑝𝑟
 
𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑦2
                                         (5)  

 

where,  𝑝 = 𝑝′ + 𝜌𝑔𝑦, 𝑇𝑟 =
2𝑙2Ω

𝜈
 (Rotational parameter), 

𝑝𝑔𝑟 =
𝑙3

𝜈𝜌
𝑐1
′  (Pressure driven parameter), 𝐺𝑟 =

𝑔𝛽 𝑙3(Δ𝑇)

𝜈2 (Grashof number) and 𝑝𝑟 =
𝜈
𝑘

𝜌 𝑐𝑝

 (Prandtl 

number). 

The boundary conditions are that the velocities are zero 

at 𝑥 = ± 1 , 𝑦 = ± 1. 

Since the flow is uniform in the 𝑧 −direction the 

sectional stream function 𝜓 (𝑥, 𝑦) is introduced in the 

𝑥 and 𝑦 direction as follows: 

𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥
                                                         (6) 

which satisfies the continuity equation (1).  

We introduce a new variable  𝑦  in the 𝑦 direction as 

𝑦 = 𝛾𝑦  , where,  𝛾 =
ℎ

𝑙
  is the aspect ratio  ℎ and 𝑙 are 

the half height and width of the duct cross-section 

respectively. 

Using equation (6) and other variables, the equations (1) 

- (5) become,  
1

𝛾3

𝜕𝜓

𝜕𝑦 

𝜕3𝜓

𝜕𝑥𝜕 𝑦 2 −
1

𝛾

𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑥 2𝜕𝑦 
+

1

𝛾

𝜕𝜓

𝜕𝑦 

𝜕3𝜓

𝜕𝑥 3 −
1

𝛾3

𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑦 3 =
𝜕4𝜓

𝜕𝑥4 +

2

𝛾

𝜕4𝜓

𝜕𝑥2𝜕𝑦 2 +
1

𝛾4

𝜕4𝜓

𝜕𝑦 4 +
𝑇𝑟

𝛾

𝜕𝑤

𝜕𝑦 
 − 𝐺𝑟

𝜕𝑇

𝜕𝑥
                              (7) 

1

𝛾

𝜕𝜓

𝜕𝑦 

𝜕𝑤

𝜕𝑥
−

1

𝛾

𝜕𝜓

𝜕𝑥

𝜕𝑤

𝜕𝑦 
= 𝑝𝑔𝑟 +

𝜕2𝑤

𝜕𝑥 2 +
1

𝛾2 −
𝑇𝑟

𝛾

𝜕𝜓

𝜕𝑦 
               (8)                                                                             

1

𝛾

𝜕𝜓

𝜕𝑦 

𝜕𝑇

𝜕𝑥
−

1

𝛾

𝜕𝜓

𝜕𝑥

𝜕𝑇

𝜕𝑦 
=

1

𝑝𝑟
(
𝜕2𝑇

𝜕𝑥 2 +
1

𝛾2

𝜕2𝑇

𝜕𝑦 2)                            (9) 

                                                                                             

The equations for 𝜓, 𝑤 and 𝑇 are actually used for 

numerical calculation. The boundary conditions for 

𝜓, 𝑤 and 𝑇 are given by 

𝑤 ±1 , 𝑦  = 𝑤 𝑥, ± 1 = 𝜓  ±1 , 𝑦  = 𝜓  𝑥, ±1 = 
𝜕𝜓

𝜕𝑥
(± 1, 𝑦 ) = 𝜓(𝑥, ±1)  =

𝜕𝜓

𝜕𝑦 
(𝑥, ± 1) = 0   

and the temperature is assumed to be constant on the 

wall as 

𝑇(±1, 𝑦 ) = ±1, 𝑇(𝑥, ± 1) = 𝑥 (heating outer wall) 

𝑇(∓ 1, 𝑦 ) = ∓ 1, 𝑇(𝑥, ∓ 1) = −𝑥 (cooling inner wall) 
The case of heating the outer side wall and cooling the 

inner side wall can be deduced directly from the results 

obtained in this study. 

 

The Total Flow Through the Duct 

The dimensional total flow 𝑄′ through the duct is 

calculated by  

 𝑄′ =   𝑤
𝑙

−𝑙

ℎ

−ℎ
𝑑𝑥′𝑑𝑦′ = 𝜈 𝑙 𝑄 

where, 𝑄 =   𝑤
1

−1

𝛾

−𝛾
𝑑𝑥𝑑𝑦   is the dimensionless total 

flow. 

 

3. METHOD OF NUMERICAL CALCULATION 
     The method adopted in the present numerical 

calculation is Spectral method. The series of the 

Chebyshev polynomial is used in the 𝑥 and 𝑦 directions 

where 𝑥 and 𝑦 are the variables. Assuming the flow is 
symmetric along the horizontal line. The expansion 

function Φn(𝑥) and Ψn(𝑥) are expressed as:  

Φn(𝑥) = (1 − 𝑥2)𝐶𝑛 (𝑥), Ψn(𝑥) = (1 − 𝑥)2𝐶𝑛  𝑥  (19)                                                                                                        

where, 𝐶𝑛(𝑥) = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1(𝑥)) is the 𝑛 −th order 

Chebyshev polynomial. 𝑤(𝑥, 𝑦, 𝑡), 𝜓 𝑥, 𝑦, 𝑡  and 

𝑇(𝑥, 𝑦, 𝑡) are expanded in terms of the function Φ𝑛 (𝑥) 

and Ψ𝑛(𝑥) as: 

 𝑤(𝑥, 𝑦, 𝑡) =    𝑤𝑚𝑛 (𝑡)𝑁
𝑛=0

𝑀
𝑚=0 Φm (𝑥)Φn(𝑦)       (20)                                                                             

 𝜓(𝑥, 𝑦, 𝑡) =    𝜓𝑚𝑛 (𝑡)𝑁
𝑛=0

𝑀
𝑚=0 Ψm (𝑥)Ψn(𝑦)        (21)  

𝑇 𝑥, 𝑦, 𝑡 =    𝑇𝑚𝑛  𝑡 𝑁
𝑛=0

𝑀
𝑚=0 Φm 𝑥 Φn 𝑦 + 𝑥   (22)                                                                           

where 𝑀, 𝑁 are the truncation numbers in the 𝑥 and 𝑦 

directions respectively, and  𝑤𝑚𝑛   , 𝜓𝑚𝑛   and 𝑇𝑚𝑛  are the 

coefficients of expansion. In order to obtain the 

solutions for 𝑤 𝑥, 𝑦, 𝑡 , 𝜓(𝑥, 𝑦, 𝑡) and 𝑇 𝑥, 𝑦, 𝑡 , the 

expansion series  (20)-(22) are substituted into the basic 

equations (16)-(18). The collocation method (Gottlieb 

and Orszag,1977) applied in 𝑥 and 𝑦 directions yield a 

set of nonlinear differential equations for 𝑤𝑚𝑛   

, 𝜓𝑚𝑛   and 𝑇𝑚𝑛  . The collocation points 𝑥𝑖 , 𝑦𝑖 are taken 
as: 

𝑥𝑖 = 𝑐𝑜𝑠  𝜋  1 −
𝑖

𝑀+2
  ,    𝑖 = 1, . . . . . . 𝑀 + 1        (23)                   

𝑦𝑖 = 𝑐𝑜𝑠  𝜋  1 −
𝑗

𝑁+2
  ,     𝑖 = 1, . . . . . . 𝑁 + 1        (24)                   

The obtained numerical algebraic equations are solved 

by Newton-Raphson method as well 

as Arc-length method. The convergence is assured by 

taking sufficiently small 𝜖𝑝(𝜖𝑝 < 10−8) defined as: 
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  𝜖𝑝 =     [(𝑤𝑚𝑛
(𝑝+1)

−𝑤𝑚𝑛
(𝑝)

)2 +  (𝜓𝑚𝑛
(𝑝+1)

−𝜓𝑚𝑛
(𝑝)

)2

𝑁

𝑛=0

𝑀

𝑚=0

+  (𝑇𝑚𝑛
(𝑝+1)

−𝑇𝑚𝑛
(𝑝)

)2]                        (25)  
For sufficient accuracy of the solution, we take 𝑀 = 16 

and 𝑁 = 32 for the rectangular duct cross-section. 

 

4. RESULTS AND DISCUSSION 
     Steady solution for Non-Isothermal flow (Grashof 

number 𝐺𝑟 = 100): 
We take the convective rotating straight duct having 

different aspect ratio (𝛾) to investigate the flow 

characteristics with pressure deriven parameter (𝑃𝑔𝑟 ), 

rotation parameter (𝑇𝑟) and prandtl number 𝑃𝑟 = 7.0, 

for water) effect.The numerical calculations are carried 

out for water at an external heat on the outer wall of the 

duct. We investigate the flow characteristics with 

varying pressure deriven parameter while rotational 

parameter remains constant and vice versa. For the 
above mentioned purposes, we consider two cases,  

Case I: 𝛾 =  6 and 𝑃𝑔𝑟 = 500 and Case II:  𝛾 =

 6 and 𝑝 𝑔𝑟 =  800. Thus an interesting and complicated 

flow behaviour of the above mentioned two cases will 

be expected, if the duct rotation is involved in these 

convective cases. According to the definition of 𝑇𝑟  

means that the rotational direction is in the same as that 

of main flow. First, the accuracy of the numerical 

calculation is investigated for the truncation numbers 𝑀 

and 𝑁 are used in this investigation. For a good 

accuracy of the solutions, 𝑁 is chosen equal to 

 𝛾𝑀, where, 𝛾 is the aspect ratio of the duct cross 

section. After a detail investigation over the truncation 

numbers, it is concluded that the values 𝑀 =  16 and 

𝑁 =  32 give sufficient accuracy for the present 

numerical calculations, the details are not given here for 
brevity. 

Case I:  𝜸 = 𝟔 and 𝒑𝒈𝒓 = 𝟓𝟎𝟎 

     The steady solution curve is obtained for 𝛾 = 6 and 

𝑝𝑔𝑟 = 500 in the range 0 ≤  𝑇𝑟 ≤  70   and the Figure 2 

shows the steady solution curve. Figure 2 shows the 

total flow 𝑄 through the duct versus the Rotational 

parameter 𝑇𝑟 . The complicated region of the solution 

curve are enlarged to understand clearly. We found that 

steady solution curve consists of 15 sections. These 15 

sections of the solution curve are shown in enlargement 

shape in Figures 3(a)-3(d). The solution curve starts 

with the curve 𝑟1  (Figure 3(a)) initially with 𝑇𝑟 = 15 

and turns at a point, where 𝑇𝑟 = 70. The other section 

curves are represented by 𝑟2 − 𝑟15  (see Figures 3(a)-

3(d)). 

 

 

 

 

 

 

 

 
 

Fig 2. Steady solution curve for 𝛾 = 6, 𝑝𝑔𝑟 = 500, 

𝑃𝑟 = 7.0, 𝐺𝑟 = 100 and 0 ≤  𝑇𝑟 ≤  70.  

 
 

     We now discuss the variation of the secondary flow, 

the axial flow and the temperature field at several values 

of 𝑇𝑟  on the solution curve for constant 𝜓 , 𝑤 and 𝑇. We 

look the figures from the upstream. Therefore, from 

these figures we can understand the structures of the 

secondary flow, the axial flow and the contours of the 

temperature distribution in duct cross-section. 
                 3(a)                                            3(b) 

 
 

Fig 3(a)-3(b). Sections of the steady solution curve for 

𝛾 = 6, 𝑝𝑔𝑟 = 500, 𝑃𝑟 = 7.0, 𝐺𝑟 = 100  and 5 ≤  𝑇𝑟 ≤

 70.  
 

                   3(c)                                            3(d) 

        

                                                                  
 

 

 

 

 

 

 

Fig 3(c)-3(d). Sections of the steady solution curve for 

𝛾 = 6, 𝑝𝑔𝑟 = 500, 𝑃𝑟 = 7.0, 𝐺𝑟 = 100  and 5 ≤  𝑇𝑟 ≤

12.  
     The flow patterns and the temperature distribution 

are shown in Figures 4(a)-4(c) and taking four points on 

each section of the solution curve. We pick, 𝑇𝑟 = (8, 9, 

10 & 11) on 𝑟5 curve, 𝑇𝑟 = (11, 10, 10 & 10) on 𝑟6  

curve, 𝑇𝑟 = (5, 5, 5, 6, 6, 6, 7 & 7) on 𝑟15  curve (eight 

points are taken on this curve), where the stream lines 

𝜓, the contour plots of 𝑤 and the temperature 

distribution 𝑇 are drawn with Δ𝜓 =  1.0,Δ 𝑤 = 30.0 

and Δ 𝑇 = 0.80 respectively. The duct box of 𝜓, 𝑤 & 𝑇 

are discussed in the previous sections. In the figures of 

secondary flow, solid lines (𝜓 ≥  0) show that the 

secondary flow is in the counter clock-wise direction 

while the dotted ones (𝜓 <  0) show that the secondary 

flow is in the clock-wise direction. We observed that 

non-symmetric solutions are obtained for 0 ≤  𝑇𝑟 ≤
70(see Figures 4(a)-4(b).  As seen in Figure 4(a), the 
steady solution consists of asymmetric 2-vortex in the 

range  0 ≤  𝑇𝑟 ≤ 42 on curve 𝑟1  and strong 4-vortex 

with two minor vortex in the range  11 ≤  𝑇𝑟 ≤  42 on 

the section curves 𝑟1  & 𝑟2 , which are asymmetric with 

respect to 𝑦 = 0. Also, it is seen from Figures 4(a) the 

secondary flow is a strong 4-vortex solution with 2 

minor vortex on 𝑟2  section curve of the solution curve 
generated at the outer wall of the duct.  Figures 4(b)-

4(c) show that the secondary flow is a strong 4-vortex 
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solution on the other section curves except 

𝑟1  & 𝑟2  section curves. From these figures it is seen that 

the  maximum axial flow is shifted to the outer wall of 

the duct cross-section for small values and large values 

of 𝑇𝑟 . The physical mechanism responsible for such 

behavior is easily understood, once we recognize that 

the axial flow is shifted due to rotation. In figures of 

temperature field, the solid lines are those for 𝑇 ≥ 0 and 

dotted ones for 𝑇 < 0. In Figures 4(a)-4(c), the bottom 

contour plots show the temperature distribution𝑇. 

External heating sets up an intense temperature gradient 

at the outer wall of the duct cross-section. The contours 

of the temperature distribution gradually acquires strong 

on the outer wall, as the total flow increases or 

decreases. The intense of the temperature field is strong 

near the outer wall of the duct cross-section at strong 

rotational parameter associated with a large number of 
secondary flow vortex motion.  

Plots on curve 𝑟1 and 𝑟2  
 

 

 

 

 

 

 

 

 

 

Fig 4(a). Stream lines of the secondary flow (top), 

Contours of the axial flow (middle) and Contours of the 

temperature field (bottom) of steady non-isothermal 

flow on 𝑟1  and 𝑟2  for  𝐺𝑟 = 100, 𝑃𝑟 = 7.0 and 𝑝𝑔𝑟 =

500 at 𝑇𝑟 = 15, 42, 66, 70, 69, 59, 47 and 11 from left 

to right. (Actual figure size is not shown for brevity) 

Plots on curve 𝑟5 and 𝑟6   

. 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig 4(b). Stream lines of the secondary flow (top), 

Contours of the axial flow (middle) and Contours of the 

temperature field (bottom) of steady non-isothermal 

flow on 𝑟5 and 𝑟6  for 𝐺𝑟 =100, 𝑃𝑟 =7.0 and 𝑝𝑔𝑟 = 500 

at 𝑇𝑟 = 8, 9, 10, 11, 11, 10, 10 and 10 from left to right. 

(Actual figure size is not shown for brevity) 

Plots on curve 𝑟15   
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig 4(c). Stream lines of the secondary flow (top), 

Contours of the axial flow (middle) and Contours of the 

temperature field (bottom) of steady non-isothermal 

flow on 𝑟15  for 𝐺𝑟 =100, 𝑃𝑟 =7.0 and 𝑝𝑔𝑟 = 500at 

𝑇𝑟 =5, 5, 5, 6, 6, 6, 6 and 6 from left to right. 

Case II: 𝜸 =  𝟔 and 𝒑𝒈𝒓 =  𝟖𝟎𝟎 

     From Figure 5, we identify 14 sections of  the steady 

solution curve. The steady solution curve is  obtained 

for 𝛾 =  6 and 𝑝𝑔𝑟 =  800 in the range 0 ≤ 𝑇𝑟 ≤ 147 

and Figure 5 shows the steady solution curve. Figure 5 

shows the total flow 𝑄 through the duct versus the 

Rotational parameter 𝑇𝑟 . We found that at some area the 
sections of the steady solution curve are closed to each 

other (see Figure 5). The solution curve starts initially 

with 𝑇𝑟 = 0. In the Figures 5(b)-5(d), the sections of the 

solution curve are shown, which are denoted by 𝑐1 − 𝑐14 

respectively. The sections of the solution curve have 

increasing and decreasing behaviour as the total flow 𝑄 

as well as Rotational parameter 𝑇𝑟  increases or 

decreases. 
     The secondary flow, the axial flow and the 

temperature distribution at several values of  𝑇𝑟  on the 

solution curve for 𝜓, 𝑤 and 𝑇 will be discussed now. 

The stream lines of the secondary flow, contours of the 

axial flow and contours of the temperature distribution 

are looked from the up stream of the duct cross-section. 

 
Fig 5. Steady solution curve for 𝛾 =  6, 𝑝𝑔𝑟 =

 800, 𝑃𝑟 = 7.0, 𝐺𝑟 = 100 and 0 ≤ 𝑇𝑟 ≤ 147. 

8 9 10 11 11 10 10 10 

𝜓 

𝑤 

𝑇 

𝑇𝑟  

𝜓 

𝑤 

𝑇 

𝑇𝑟  
15 42 22 70 69 59 47 11 

5 5 5 6 6 6 7 7 

𝜓 

𝑤 

𝑇 

𝑇𝑟  
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 The contour plots for 𝜓, 𝑤 & 𝑇 are shown in Figures 

6(a)-6(c) taking four points on each section of the 

solution curve. We choose, 𝑇𝑟 = (25, 36, 47 & 57) on 𝑐1 

curve, 𝑇𝑟 = (67, 66, 65 & 64) on 𝑐2 curve, 𝑇𝑟 = (117, 

124, 137 & 147)  

            

                  5(a)                                             5(b) 

 
Fig 5(a)-5(b). Sections of the steady solution curve for 

𝛾 =  6, 𝑝𝑔𝑟 =  800, 𝑃𝑟 = 7.0, 𝐺𝑟 = 100 and 18 ≤ 𝑇𝑟 ≤

138. 

 

               5(c)                                             5(d) 

 
Fig 5(c)-5(d). Sections of the steady solution curve for 

𝛾 =  6, 𝑝𝑔𝑟 =  800, 𝑃𝑟 = 7.0, 𝐺𝑟 = 100  and 52 ≤ 𝑇𝑟 ≤

147. 
 

on 𝑐11  curve, 𝑇𝑟 = (144, 140, 137 &     132) on 𝑐12  

curve, 𝑇𝑟 = (130, 131, 132 & 132) on 𝑐13  curve, 𝑇𝑟 = 

(132, 132, 131 & 131) on 𝑐14  curve, where the stream 

lines  𝜓, the contour plots of 𝑤 and the contour plots of  
 

Plots on curve  𝑐1 and 𝑐2 
 

 

 

 

 

 

 

 

 

 

 

Fig6(a). Stream lines of the secondary flow (top), 

Contours of the axial flow (middle) and Contours of the 

temperature field (bottom) of steady non-isothermal 

flow on 𝑐1 and 𝑐2 for 𝐺𝑟 = 100, 𝑃𝑟 = 7.0 and 𝑝𝑔𝑟 =

 800 at 𝑇𝑟 = 25, 36, 47, 57, 67, 66, 65 and 64 from left 

to right. 

Plots on curve 𝑐11  and 𝑐12  
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig 6(b). Stream lines of the secondary flow (top), 

Contours of the axial flow (middle) and Contours of the 

temperature field (bottom) of steady non-isothermal 

flow on 𝑐11  and 𝑐12  for 𝐺𝑟 = 100, 𝑃𝑟 = 7.0 and 

𝑝𝑔𝑟 =  800 at 𝑇𝑟 =117, 124, 137, 147, 144, 140, 137 

and 132 from left to right. 
 

Plots on 𝑐13  and 𝑐14  
 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig 6(c). Stream lines of the secondary flow (top), 

Contours of the axial flow (middle) and Contours of the 

temperature field (bottom) of steady non-isothermal 

flow on 𝑐13  and 𝑐14  for 𝐺𝑟 = 100, 𝑃𝑟 = 7.0 and 

𝑝𝑔𝑟 =  800 at 𝑇𝑟 = 130, 131, 132, 132, 132, 132, 131 

and 131 from left to right. 

 

the temperature field 𝑇 are drawn with the increments 

Δ𝜓 =  1.20,Δ 𝑤 = 35.0 and Δ 𝑇 = 0.50 respectively.  

the secondary flow is in  the clock-wise direction. We 

observed that, for the convective case, non-symmetric 

solutions are obtained for 0 ≤ 𝑇𝑟 ≤ 147 (see Figures 

6(a)-6(c)).  From the Figures 6(a)-6(c), it is seen that the 

secondary flow is :  

𝜓 

𝑤 

𝑇 

𝑇𝑟  

𝜓 

𝑤 

𝑇 

𝑇𝑟  130 131 132 132 132 132 131 131 

𝜓 

𝑤 

𝑇 

𝑇𝑟  25 36 47 57 67 66 65 64 

117 124 137 147 144 140 137 132 
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1. 2-vortex solution on 𝑐1 and  4-vortex solution with 2-

minor vortex generated at the outer wall of the duct on  

𝑐2 , 𝑐3 , 𝑐4 , 𝑐5 , 𝑐7 and 𝑐10  section curves(Figure not given). 

2. 6-vortex with 3-minor vortex generated at the outer 

wall of the duct on the section curves 𝑐6 , 𝑐8 , 𝑐12 , 𝑐13  and 

𝑐14  of the solution curve. (Figure not given for 𝑐6 , & 𝑐8). 
3. 4-vortex solution  for the first two points and 6-vortex 

solution for the last two points on the section curve 𝑐11 . 

From the Figures 6(a)-6(c), we observed that the  

maximum axial flow is shifted from the center to the 

outer wall of the duct cross-section for small and large 

𝑇𝑟 . In figures of temperature field, the solid lines are 

those for 𝑇 ≥  0 and dotted ones for 𝑇 < 0. In Figures 

6(a)-6(c), the bottom contour plots show the 

temperature distribution 𝑇. External heating sets up an 
intense temperature gradient at the outer wall of the duct 

cross-section. As the total flow increases or decreases in 

a certain range (see Figures 6(a)-6(c)), the contours of 

the temperature distribution gradually acquires strong 

on the outer wall. The intense of the temperature field is 

too high near the outer wall of the duct cross-section at 

large values of Rotational parameter. This type of 

intense is expected due to the heating of the outer wall 

of the duct cross-section. 

 
5. CONCLUSIONS 
     According to the results, we obtained the following 

conclusions: 

1. In both cases of large pressure-driven force 

(centrifugal force) and Coriolis force we obtained 

the multiple solutions. 

2. The non-symmetric flow structures at the maximum 

total flow region show almost the same flow 

behaviour in each cases. 

3. The non-symmetric 2-cell structure appears for small 

values of 𝑇𝑟  and 𝑝𝑔𝑟 , while non-symmetric 6-cell 

structure occurs in the range of 𝑇𝑟  (the values of 𝑇𝑟  

are large) in two cases of Rotational parameter 

𝑇𝑟 = 100, 150. Also the non-symmetric 10-cell 

structure occurs in the small range of 𝑝𝑔𝑟  (the values 

of 𝑝𝑔𝑟  are large) in two cases of pressure-driven 

parameter 𝑝𝑔𝑟 = 500, 800. 

4. In both cases, the intense of the temperature 
distributions are very strong near the heated wall of 

the duct cross-section. 
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7. NOMENCLATURE 
 

Symbol Meaning 

𝛾 Aspect ratio 

𝐷𝑛  Dean Number 

𝑇𝑟  Taylor Number 

𝑃𝑔𝑟  pressure deriven parameter 
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